Fundamental Theorem of Calculus II

- 1. True **FALSE** $\int_{a}^{x} f(u) du$ gives you a general form of an antiderivative (including the +C).
- 2. **TRUE** False Let $F(x) = \int_0^x f(u) du$. Then G(x) be another antiderivative of f(x). For all x we have F(x) = G(x) - G(0).
- 3. **TRUE** False Let f(x) be a continuous function on the interval [a, b], and let $F(x) = \int_a^x f(u) du$. Then F(x) is defined on the interval [a, b].
- 4. True **FALSE** Let f(x) be a continuous function on the interval [a, b], and let $F(x) = \int_a^x f(u) du$. Then F'(x) = f(x) on the interval [a, b].
- 5. If $\int_{1}^{x} f(u) du = \frac{1}{x} + a$, find f, a.

Solution: Taking the derivative, the left side gives us f(x) and the right side gives us $-x^{-2}$ so $f(x) = -x^{-2}$. Then we have that $\int_1^x f(u) du = 1/x - 1/1$ so a = 1.

Σ -notation

Examples

6. Write out $\sum_{r=1}^{n} (-1)^{r} r$.

Solution: The first few terms are $(-1)^1 \cdot 1 + (-1)^2 \cdot 2$ so we have that this is equal to

$$-1+2-3+\cdots+(-1)^n n.$$

7. Write out $\sum_{r=1}^{\infty} (-1)^r r$.

Solution:

$$-1+2-3+\cdots.$$

8. Write $1 + 3 + 5 + \dots + (2n + 1)$ in \sum notation.

Solution: We choose an index i and let it start at 1. We notice that this is an arithmetic sequence with difference 2 and so we guess that each term is something like 2i + c. If i = 1, then we should get 1 so c = -1 and if i = 2, then 2i - 1 = 3 as required. We want to end when 2i - 1 = 2n + 1 so when i = n + 1, thus

$$1 + 3 + \dots + (2n + 1) = \sum_{i=1}^{n+1} (2i - 1).$$

Problems

9. Write out $\sum_{k=1}^{2n} \frac{1}{k}.$

Solution:

$$\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2n}$$

10. Write out $\sum_{a=1}^{n} f(a)^{2}$.

Solution:

$$f(1)^2 + f(2)^2 + \dots + f(n)^2.$$

11. Convert $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \cdots$ into Σ notation.

Solution: We see that the pattern is similar to $\frac{(-1)^i}{i}$, but when i = 1, the term is positive so we need to multiply by an additional factor of -1. Since this term doesn't end, this is

$$\sum_{i=1}^{\infty} -\frac{(-1)^i}{i}.$$

12. Convert $(f(x) - 1)^2 + (f(x) - 2)^2 + \dots + (f(x) - 10)^2$ to Σ notation.

Solution: Each term is of the form $(f(x) - i)^2$ with *i* starting at 1 and going to 10 so this is

$$\sum_{i=1}^{10} (f(x) - i)^2.$$

13. Convert $-1 + 4 - 9 + \cdots - 121$ into Σ notation.

Solution: We recognize these terms as squares. Then note that the signs alternate so there is a factor of $(-1)^t$ in there as well. Verifying that $-121 = (-1)^{11} \cdot 11^2$, this sum is

$$\sum_{t=1}^{11} (-1)^t t^2.$$

14. Write $1 + 2 + 4 + 8 + \dots + 2^{2^n}$ in Σ notation.

Solution: Each term is of the form 2^k where we start at k = 0 and end at $k = 2^n$ so the sum is

$$\sum_{k=0}^{2^n} 2^k.$$

Substitution Rule

Example

15. Find
$$\int x e^{x^2} dx$$
.

Solution: Let $u = x^2$, then du = 2xdx and hence $xdx = \frac{du}{2}$. Therefore

$$\int xe^{x^2}dx = \int \frac{e^u du}{2} = \frac{e^u}{2} + C = \frac{e^{x^2}}{2} + C.$$

16. Find $\int_0^{16} \sqrt{4 - \sqrt{x}} dx$.

Solution: We guess that $u = 4 - \sqrt{x}$ but $du = -\frac{1}{2\sqrt{x}}dx$ and it seems like we are stuck since that doesn't appear. But, remember that $u = 4 - \sqrt{x}$ so $\sqrt{x} = 4 - u$ and so $du = \frac{-1}{2(4-u)}dx$. When x = 0, then u = 4 and when x = 16, then $u = 4 - \sqrt{16} = 0$. Thus $\int_{0}^{16} \sqrt{4 - \sqrt{x}}dx = \int_{4}^{0} \sqrt{u}(2u - 8)du = \frac{4}{5} \cdot u^{5/2} - \frac{16}{3} \cdot u^{3/2} \Big|_{4}^{1}$ $= 0 - (-128/5 - 128/3) = \frac{256}{15}.$

Problems

17. Find $\int \frac{\ln x}{x} dx$.

Solution: Let $u = \ln x$, then $du = \frac{dx}{x}$, so we have that $\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + C = \frac{(\ln x)^2}{2} + C.$

18. Find $\int \frac{1}{x \ln x} dx$.

Solution: Let $u = \ln x$, then $du = \frac{1}{x}dx$ so $\int \frac{1}{x \ln x} dx = \int \frac{1}{u} du = \ln |u| + C = \ln |\ln x| + C.$

19. Find $\int x\sqrt{1-x}dx$.

Solution: Let u = 1 - x and so du = -dx and x = 1 - u so this is $\int x\sqrt{1-x} = \int (1-u)\sqrt{u}(-du) = \frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2} + C = \frac{2(1-x)^{5/2}}{5} - \frac{2(1-x)^{3/2}}{3} + C.$

20. Find
$$\int_0^{\sqrt{\pi}} x \cos(x^2) dx$$
.

Solution: Let $u = x^2$ and so du = 2xdx and when x = 0, then u = 0 and when $x = \sqrt{\pi}$, then $u = \pi$ so we have $\int_0^{\sqrt{\pi}} x \cos(x^2) dx = \int_0^{\pi} \frac{\cos(u)du}{2} = \frac{\sin u}{2} \Big|_0^{\pi} = 0.$

21. Find $\int \sin(x) \sec^2(x) dx$.

Solution: We rewrite $\sec^2(x) = \frac{1}{\cos^2(x)}$. Let $u = \cos(x)$ so that $du = -\sin x dx$ and hence

$$\int \sin(x) \sec^2(x) dx = \int -u^{-2} du = \frac{1}{u} + C = \frac{1}{\cos(x)} + C = \sec(x) + C.$$

22. Find $\int 2xe^{e^{x^2}}e^{x^2}dx$.

Solution: We first try $u = x^2$ so du = 2xdx and hence

$$\int 2xe^{e^{x^2}}e^{x^2}dx = \int e^{e^u}e^u du.$$

Now let $v = e^u$ so $dv = e^u du$ and hence

$$= \int e^{v} dv = e^{v} + C = e^{e^{u}} + C = e^{e^{x^{2}}} + C.$$