Fundamental Theorem of Calculus II

1. True FALSE $\int_{a}^{x} f(u) d u$ gives you a general form of an antiderivative (including the
$+C)$.
2. TRUE False Let $F(x)=\int_{0}^{x} f(u) d u$. Then $G(x)$ be another antiderivative of $f(x)$. For all x we have $F(x)=G(x)-G(0)$.
3. TRUE False Let $f(x)$ be a continuous function on the interval $[a, b]$, and let $F(x)=$ $\int_{a}^{x} f(u) d u$. Then $F(x)$ is defined on the interval $[a, b]$.
4. True FALSE Let $f(x)$ be a continuous function on the interval $[a, b]$, and let $F(x)=$ $\int_{a}^{x} f(u) d u$. Then $F^{\prime}(x)=f(x)$ on the interval $[a, b]$.
5. If $\int_{1}^{x} f(u) d u=\frac{1}{x}+a$, find f, a.

Solution: Taking the derivative, the left side gives us $f(x)$ and the right side gives us $-x^{-2}$ so $f(x)=-x^{-2}$. Then we have that $\int_{1}^{x} f(u) d u=1 / x-1 / 1$ so $a=1$.

Σ-notation

Examples

6. Write out $\sum_{r=1}^{n}(-1)^{r} r$.

Solution: The first few terms are $(-1)^{1} \cdot 1+(-1)^{2} \cdot 2$ so we have that this is equal to

$$
-1+2-3+\cdots+(-1)^{n} n
$$

7. Write out $\sum_{r=1}^{\infty}(-1)^{r} r$.

Solution:

$$
-1+2-3+\cdots .
$$

8. Write $1+3+5+\cdots+(2 n+1)$ in \sum notation.

Solution: We choose an index i and let it start at 1 . We notice that this is an arithmetic sequence with difference 2 and so we guess that each term is something like $2 i+c$. If $i=1$, then we should get 1 so $c=-1$ and if $i=2$, then $2 i-1=3$ as required. We want to end when $2 i-1=2 n+1$ so when $i=n+1$, thus

$$
1+3+\cdots+(2 n+1)=\sum_{i=1}^{n+1}(2 i-1)
$$

Problems

9. Write out $\sum_{k=1}^{2 n} \frac{1}{k}$.

Solution:

$$
\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{2 n} .
$$

10. Write out $\sum_{a=1}^{n} f(a)^{2}$.

Solution:

$$
f(1)^{2}+f(2)^{2}+\cdots+f(n)^{2} .
$$

11. Convert $\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\cdots$ into Σ notation.

Solution: We see that the pattern is similar to $\frac{(-1)^{i}}{i}$, but when $i=1$, the term is positive so we need to multiply by an additional factor of -1 . Since this term doesn't end, this is

$$
\sum_{i=1}^{\infty}-\frac{(-1)^{i}}{i}
$$

12. Convert $(f(x)-1)^{2}+(f(x)-2)^{2}+\cdots+(f(x)-10)^{2}$ to Σ notation.

Solution: Each term is of the form $(f(x)-i)^{2}$ with i starting at 1 and going to 10 so this is

$$
\sum_{i=1}^{10}(f(x)-i)^{2}
$$

13. Convert $-1+4-9+\cdots-121$ into Σ notation.

Solution: We recognize these terms as squares. Then note that the signs alternate so there is a factor of $(-1)^{t}$ in there as well. Verifying that $-121=(-1)^{11} \cdot 11^{2}$, this sum is

$$
\sum_{t=1}^{11}(-1)^{t} t^{2}
$$

14. Write $1+2+4+8+\cdots+2^{2^{n}}$ in Σ notation.

Solution: Each term is of the form 2^{k} where we start at $k=0$ and end at $k=2^{n}$ so the sum is

$$
\sum_{k=0}^{2^{n}} 2^{k}
$$

Substitution Rule

Example

15. Find $\int x e^{x^{2}} d x$.

Solution: Let $u=x^{2}$, then $d u=2 x d x$ and hence $x d x=\frac{d u}{2}$. Therefore

$$
\int x e^{x^{2}} d x=\int \frac{e^{u} d u}{2}=\frac{e^{u}}{2}+C=\frac{e^{x^{2}}}{2}+C
$$

16. Find $\int_{0}^{16} \sqrt{4-\sqrt{x}} d x$.

Solution: We guess that $u=4-\sqrt{x}$ but $d u=-\frac{1}{2 \sqrt{x}} d x$ and it seems like we are stuck since that doesn't appear. But, remember that $u=4-\sqrt{x}$ so $\sqrt{x}=4-u$ and so $d u=\frac{-1}{2(4-u)} d x$. When $x=0$, then $u=4$ and when $x=16$, then $u=4-\sqrt{16}=0$. Thus

$$
\begin{gathered}
\int_{0}^{16} \sqrt{4-\sqrt{x}} d x=\int_{4}^{0} \sqrt{u}(2 u-8) d u=\frac{4}{5} \cdot u^{5 / 2}-\left.\frac{16}{3} \cdot u^{3 / 2}\right|_{4} ^{1} \\
=0-(-128 / 5-128 / 3)=\frac{256}{15}
\end{gathered}
$$

Problems

17. Find $\int \frac{\ln x}{x} d x$.

Solution: Let $u=\ln x$, then $d u=\frac{d x}{x}$, so we have that

$$
\int \frac{\ln x}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln x)^{2}}{2}+C
$$

18. Find $\int \frac{1}{x \ln x} d x$.

Solution: Let $u=\ln x$, then $d u=\frac{1}{x} d x$ so

$$
\int \frac{1}{x \ln x} d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |\ln x|+C .
$$

19. Find $\int x \sqrt{1-x} d x$.

Solution: Let $u=1-x$ and so $d u=-d x$ and $x=1-u$ so this is

$$
\int x \sqrt{1-x}=\int(1-u) \sqrt{u}(-d u)=\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C=\frac{2(1-x)^{5 / 2}}{5}-\frac{2(1-x)^{3 / 2}}{3}+C .
$$

20. Find $\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x$.

Solution: Let $u=x^{2}$ and so $d u=2 x d x$ and when $x=0$, then $u=0$ and when $x=\sqrt{\pi}$, then $u=\pi$ so we have

$$
\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x=\int_{0}^{\pi} \frac{\cos (u) d u}{2}=\left.\frac{\sin u}{2}\right|_{0} ^{\pi}=0
$$

21. Find $\int \sin (x) \sec ^{2}(x) d x$.

Solution: We rewrite $\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}$. Let $u=\cos (x)$ so that $d u=-\sin x d x$ and hence

$$
\int \sin (x) \sec ^{2}(x) d x=\int-u^{-2} d u=\frac{1}{u}+C=\frac{1}{\cos (x)}+C=\sec (x)+C .
$$

22. Find $\int 2 x e^{e^{x^{2}}} e^{x^{2}} d x$.

Solution: We first try $u=x^{2}$ so $d u=2 x d x$ and hence

$$
\int 2 x e^{e^{x^{2}}} e^{x^{2}} d x=\int e^{e^{u}} e^{u} d u
$$

Now let $v=e^{u}$ so $d v=e^{u} d u$ and hence

$$
=\int e^{v} d v=e^{v}+C=e^{e^{u}}+C=e^{e^{x^{2}}}+C .
$$

